
Quantum Coding Theory (UC Berkeley CS294, Spring 2024)

Lecture 14: Chain Complexes
March 8, 2024

Lecturer: John Wright Scribe: Angelos Pelecanos

In the last lecture, we saw surface codes, which allow us to build a quantum code from
an arbitrary surface. This is done by choosing some cellulation of the surface and then
associating the qubits to the edges, the Z parity checks to the faces, and the X parity checks
to the vertices.

We also saw how some properties of the resulting code were related to the topology of
the surface and not to the exact cellulation used. For example, the number of logical qubits
was equal to twice the genus of the surface.

In this lecture, we will see how we can use chain complexes, an object from algebraic
topology, to study surface codes, but also quantum codes in general.

1 Introduction to Chain Complexes

Let us again consider a surface code, and zoom into a small portion of its grid. Then what
are objects that we care about?

1. General Z parity checks: They correspond to subsets of plaquettes,

0 1 1

0 10

1

0

0

0

01

2. Codewords: They specify 0 or 1 on the edges,

1

0 1

1

3. General X parity checks: They correspond to subsets of the vertices,

0 1

1 0

1

Turns out that all 3 of these objects are chains.

1.1 Chains and boundary maps

Definition 1.1. Let V be the set of vertices, E the set of edges, and F the set of faces.
Then

• A 0-chain is an element v ∈ ZV
2 . In particular, it assigns to every vertex a 0 or a 1.

• A 1-chain is an element e ∈ ZE
2 . In particular, it assigns to every edge a 0 or a 1.

• A 2-chain is an element f ∈ ZF
2 . In particular, it assigns to every face a 0 or a 1.

One may wonder, why did we assign the numbers 0, 1, and 2 to each specific object? It
turns out that each number represents the dimensionality of the object. For example, a vertex
is a 0-dimensional object and thus belongs to a 0-chain. Similarly, edges are 1-dimensional
objects, and faces are 2-dimensional.

We will denote by Ci the set of i-chains. The relation between these chains is captured
by the boundary map.

Definition 1.2. The boundary map ∂2 maps a 2-chain to its 1-chain boundary. Similarly,
∂1 maps a 1-chain to its 0-chain boundary.

Example 1.3. Consider the following 2-chain f . We can compute its boundary map ∂2
to obtain the 1-chain boundary ∂2(f), which assigns the value 1 to the edges that surround
the 2-chain faces. We can then apply the boundary map ∂1 to obtain the 0-chain boundary
∂1∂2(f).

The boundary of a 1-chain includes the vertices that only touch one edge. In our case,
since ∂2(f) is a cycle, it has no boundary. Thus ∂1∂2f = 0.

1

1

1

1

∂2
0 0 0

0 11

0

0

0

0

00

1

1 0

0 0

0

∂1
0

0

Example 1.4. Consider the following 1-chain. We apply ∂1 to get its boundary, which is
non-zero.

11 1
∂1

1

2

If we want to formally define these boundary maps, first let f be the indicator for one
face. Then ∂2(f) = e, where e is the indicator of the edges that make up f ’s boundary. For
general f , we extend the definition of ∂2 via linearity.

We can see that the boundary map depends on the cellulation, which defines the boundary
of a face.

Remark. Even though these objects are called chains, as we saw in Example 1.4 they do
not have to be continuous as our intuition may suggest!

Matrix representations. Since ∂2 is a linear map, it can be represented by a matrix

∂2 =

f ↓[]
e → cef ,

where the entry cef is 1 if the edge e borders face f in the cellulation. In particular, the
column under face f is the indicator of f ’s boundary.

It is not hard to see that this matrix is the Z parity check matrix HT
Z . This is because

a codeword c ∈ CZ is defined on edges and thus c ∈ ZE
2 . The parity checks imply that for

every face, the sum of the bits on its boundary is equal to 0 in Z2. Note also that this matrix
contains a redundant parity check (since the sum of the parity checks of all faces always
succeed), but our observation is still valid.

We can similarly represent the linear map ∂1 as a matrix

∂1 =

e ↓[]
v → dve ,

where the entry dve is 1 if the vertex v is one of the endpoints of edge e. Again, we observe
that this matrix is exactly the matrix that contains the X parity checks, HX .

A fundamental fact in topology is the following:

Fact 1.5. The boundary of a boundary is zero.

In the Example 1.3 we saw above, the boundary of a boundary is obtained by applying
the maps ∂1∂2. Indeed, we saw that this maps to the empty set, zero. This fact should hold
for every cellulation of a surface.

More importantly, Fact 1.5 implies something very useful for our code construction. If
we replace the maps by their matrix representations, we get

∂1∂2 = 0 =⇒ HXH
T
Z = 0 =⇒ C⊥

Z ⊆ CX

thus we have a valid CSS code.

3

1

11

11 11

Figure 1: On the left we have the boundary of f , which is the sum of 3 plaquettes / faces.
On the right there is a 1-cycle, which is a 1-chain with no boundary

1.2 The homology group

In the past two lectures, we spent some time studying equivalent cycles and cycles that are
not boundaries, as they determined the logical operators and the distance of a code. In the
framework of chain complexes, we will see how both the logical operators and the distance
of a code are captured by the homology group.

Definition 1.6. A 1-boundary is a 1-chain that is of the form ∂2(f). We denote the set of
all 1-boundaries by:

B1 = {e | e is a 1-boundary}.

A 1-cycle e is a 1-chain with no boundary, that is ∂1(e) = 0. We denote the set of all 1-cycles
by:

Z1 = {e | ∂i(e) = 0}.

Definition 1.7. Two 1-cycles e, e′ ∈ Z1 are homologically equivalent if e = e′ + b, for b ∈ B1

being a boundary. In words, two 1-cycles are equivalent if they only differ by a boundary.

Definition 1.8. The 1st homology group contains the 1-cycles modded out by 1-boundaries,
i.e.

H1 = Z1/B1.

Recall that we can represent a Z error by Ze1 , where e1 is the 1-chain that specifies which
edges contain the error. Then two errros are

Ze1 , Ze2 =

{
same e1, e2 ∈ same equivalence class

different otherwise
.

Example 1.9. Recall the toric code and the 4 errors that you can apply. Then we can write
the elements of the 1st homology group as

H1 = {0, e1, e2, e1 + e2}.

Observe that H1 is an additive group since when you apply two errors, you get a third error
that is applied to the “sum” of the edges of the two errors, i.e. Ze1Ze2 = Ze1+e2.

4

Z1

Z2

Z1Z2 = Ze1+e2

In conclusion, the homology group H1 determines some properties of our code:

• The size of H1 is the number of distinct Z operations.

• The distance is the minimum weight of a non-zero element of H1.

2 Analysis of the X parity checks

So far we have spent a lot of time studying the Z parity checks of our CSS code. A very
attractive feature of the toric code was that we could replicate our Z parity check analysis to
the X parity checks by considering the dual lattice. Could we hope to do something similar?

The definition of a dual can be extended to cellulations other than a square lattice. Taking
the dual of an arbitrary cellulation of a 2D surface corresponds to introducing a vertex for
each face, and connecting two faces that share an edge. The resulting faces then correspond
to the vertices of the primal cellulation.

Armed with the dual, let us introduce the chain on the dual of our cellulation. This is
called a co-chain, or a dual chain.

Remark. The square lattice on a torus was a particularly nice cellulation, whose dual was
the same square lattice on a torus. This may not always be the case, as we saw with the
square lattice on the disk. Thus it makes sense to introduce different notation for the dual.

Definition 2.1. Let V be the set of vertices, E the set of edges, and F the set of faces of
the dual. Then

• A 0-cochain is an element v ∈ ZV
2 .

• A 1-cochain is an element e ∈ ZE
2 .

• A 2-cochain is an element f ∈ ZF
2 .

These are the same definitions as in the primal. We denote by C∗
i the set of i-cochains.

We define the analog of the boundary map in the dual to be ∂∗
i that maps an (i − 1)-

cochain to its i-cochain boundary. Note that now we are mapping to a higher-dimensional
object.

5

Notation. In the literature it is typical for people to write ∂∗
i−1 instead of ∂∗

i .

Example 2.2 (Boundary of a boundary is zero in the dual). Consider the following 0-cochain.
Its boundary map will send it to the set of edges that the vertex parity checks involve. Namely,
any edge that is incident to an odd number of vertices of the 0-cochain will be in its boundary.
The boundary of a 1-cochain is the set of faces that are incident to an odd number of edges.
We can thus verify that even in the dual, the boundary of a boundary is zero.

∂∗
11 1 1 1

1 1
11

∂∗
2 0 0

0 0

0

0

Since the boundary map is linear, we can write it as a matrix

∂∗
1 =

d ↓[]
e → cev = HT

X = (∂1)
T ,

where cev is 1 if vertex v is one of e’s endpoints. Similarly,

∂∗
2 =

e ↓[]
f → dfe = HZ = (∂2)

T ,

with dfe being 1 if edge e borders face f .

Notation. The “∗” symbol on the boundary map may seem like the conjugate transpose.
Turns out this is almost the case, since the dual boundary maps are just transposes of the
boundary maps in the primal.

Like in the Z parity check case,

∂∗
2∂

∗
1 = HZH

T
X = 0,

indeed, the boundary of a boundary is zero even in the dual.
We can repeat the same analysis we did in the previous section and define coboundaries,

cocyles, and cohomology groups and establish their relations with the properties of our CSS
code.

6

∂3 ∂2
1

1

1
1 0

0

0

0 0
0

0

0

0

Figure 2: An example of a 3-dimensional chain complex. We first consider the indicator
vector for a single cube (3-chain). Apply its boundary map ∂3 will assign 1 to faces (2-chains)
that are adjacent to it. Applying again its boundary map ∂2 will assign 1 to edges (1-chains)
that are adjacent to an odd number of faces. Since every edge is adjacent to 2 faces in this
example, we see again that the boundary of a boundary is zero.

3 Extending to Higher Dimensions

So far we have focused on two-dimensional surfaces, however, the chain machinery that
we have developed can be very easily extended to higher dimensions. Extending to higher
dimensions will enable us to study more complicated objects that may have good error-
correction properties.

One can take a d-dimensional surface and cellulate it to d-dimensional cells. Two d-
dimensional cells will intersect on a (d− 1)-dimensional object. These (d− 1)-dimensional
objects will intersect on a (d− 2)-dimensional object, and so on.

As a result, we get a chain complex C = (C0, C1, . . . , Cd) with boundary maps ∂1, ∂2, . . . , ∂d.
The boundary maps satisfy ∂i : Ci → Ci−1 and ∂i∂i+1 (the boundary of a boundary) is the
zero map.

These properties are enough for (Ci−1, Ci, Ci+1) to define a CSS code! Namely, we will
place Z parity checks on Ci+1, X parity checks on Ci−1, and the qubits on Ci. The toric
code is just a special case with i = 1.

This already suggests a concrete direction towards getting better codes, by finding a
high-dimensional chain and looking at its resulting CSS code.

Example 3.1. In the last lecture, we considered the CSS code of the 3D torus with an
L × L × L lattice and agreed that it did not give a significant improvement over the toric
code. However, the CSS code we constructed last time placed the qubits on the 1-chains and
the parity checks on the 0- and 2-chains. Using chains, we can try placing our code on a
higher dimension.

In particular, let’s place our qubits on the faces (2-chains). The Z parity checks will
correspond to cubes, and each cube checks that its 6 neighboring faces sum to 0. The X parity
checks are now edges. Each edge has 4 incident faces and it checks whether they also sum to
0.

Is this a good code? It is not hard to compute that the number of qubits is ≈ 3L3, whereas
its distance is ≈ L (since any straight “tube” of length L that cycles around the torus satisfies
all edge parity checks, or a sequence of L parallel edges satisfies all cube parity checks). Thus
the distance is the cubic root of the number of qubits, which is worse than the toric code. The

7

number of logical qubits can also be computed and is equal to 31.
To deal with the X parity checks, it is useful for one to consider the dual of our 3D torus.

In this case, the cubes (Z parity checks) become vertices, the faces (qubits) become edges, and
the edges (X parity checks) become faces. Thus the dual of this surface is the 3D torus we
considered last class.

4 Conclusion

It turns out that the higher dimension of the 3D torus did not give any improvement to the
toric code. This raises the natural question of whether one can come up with a surface that
gives a better code than the toric code. Moreover, due to the complexity of implementing a
high-dimensional surface code in a quantum machine (how would you arrange the qubits that
live on a 4D object in the real world?), we would like this surface to be of a low dimension.

The answer for 2D surfaces turns out to be negative, as shown by Bravyi, Poulin, and
Terhal [BPT10].

Theorem 4.1 ([BPT10]). Any [[n, k, d]]-QECC on a 2D lattice with local checks satisfies
kd2 ≤ O(n).

Here “local checks” means that the parity checks only involve a constant region of qubits2.
Since k is at least 1, this means that d2 ≤ O(n) =⇒ d ≤ O(

√
n). Thus the distance of

any such code cannot be more than the square root of the number of physical qubits, which
is the distance of the toric code. Additionally, if we want our code to handle more qubits, the
distance will have to decrease. This is something we saw last time, where one could increase
the number of logical qubits by increasing the number of handles in the surface code, at the
expense of decreasing the distance relative to the number of physical qubits.

In conclusion, it seems that surface codes cannot improve on the toric code. But the
question remains: How can we generalize the toric code to get better parameters? Next class,
we will learn about hypergraph product codes (a different generalization of the toric code)
that allow us to get codes with good parameters.

1The number of logical qubits can be computed by carefully counting the number of independent parity
checks. If we ignore independence, the number of qubits is 3L3 and the number of X and Z parity checks
is 3L3 and L3 respectively. By carefully counting the number of independent X parity checks, we find that
there are only ≈ 2L3 non-redundant ones. The number of independent Z parity checks is also ≈ L3. Thus
the number of logical qubits is a constant, 3.

2As mentioned in class, one may want to “abuse” this model by adding many qubits in a small region
of the surface to make a parity check involve more qubits. Then, to keep the region small w.r.t. the entire
surface, the rest of the qubits will have to be very sparse, thus limiting the power of the remaining parity
checks.

8

References

[BPT10] Sergey Bravyi, David Poulin, and Barbara Terhal. Tradeoffs for reliable quantum
information storage in 2d systems. Physical Review Letters, 104(5), February 2010.
4, 4.1

9

	Introduction to Chain Complexes
	Chains and boundary maps
	The homology group

	Analysis of the X parity checks
	Extending to Higher Dimensions
	Conclusion

